Written test - Mathematics

2 hours

The use of documents and calculators is forbidden.

The quality of writing is an important element for the evaluation.

Exercise 1

Q. 1.1 Justify the existence of

\[I = \int_{\mathbb{R}} e^{-x^2} \, dx. \]

Q. 1.2 Compute the value of the integral \(I \).

Exercise 2

Let \(P \) be a polynomial with real coefficients, \(P \in \mathbb{R}[X] \). Assume all its roots are real. Let \(\alpha \in \mathbb{R} \). We want to prove that all the roots of \(P' + \alpha P \) are real too.

Q. 2.1 Assume at first that \(P \) has only simple roots. Show that \(P' + \alpha P \), where \(P' \) the derivative polynomial of \(P \), has only real simple roots, as well.

Q. 2.2 We do not assume that the roots of \(P \) are all simple anylonger. Show that the roots of \(P' + \alpha P \) are all real.
Exercise 3

Q. 3.1 Determine the convergence radius R of the series \[\sum \frac{n^n}{n!} z^n. \]

Q. 3.2 Study the convergence of the series on the circle of center 0 and radius R.

Exercise 4

Q. 4.1 Study the linear independence of the following families:

1. \(f_n : x \mapsto (\sin(x))^n, \ n \in \mathbb{N} \)
2. \(f_a : x \mapsto |x - a|, \ a \in \mathbb{R} \)
3. \(f_\alpha : x \mapsto \exp(\alpha x), \ \alpha \in \mathbb{C} \)
4. \((x \mapsto (\sin(x))^n), (x \mapsto (\cos(x))^n), \ n \in \mathbb{N}. \)

Q. 4.2 Let \(n \geq 1. \) Let \(f_i : \mathbb{C} \rightarrow \mathbb{C}, \ i \in \{1, \ldots, n\} \) be a family of functions. Set
\[
A : \mathbb{C}^n \rightarrow \mathcal{M}_1(\mathbb{C}) \quad \text{where} \quad (x_1, \ldots, x_n) \mapsto (f_i(x_j))_{1 \leq i, j \leq n}
\]
Find a necessary and sufficient condition on the function \(\det(A) \) so that the family \((f_i)_{1 \leq i \leq n}\) is linearly independent.

Exercise 5

Let \(X \) be a real random variable following Poisson's law with parameter \(\lambda. \) Let \(Y \) be defined as
\[
Y = \begin{cases}
\frac{X}{2} & \text{if } X \text{ is even} \\
0 & \text{if } X \text{ is odd}
\end{cases}
\]

Q. 5.1 Determine the law of \(Y. \)

Q. 5.2 Compute the expectation of \(Y. \)

Q. 5.3 Compute the variance of \(Y. \)