Les Thèmes de recherche

Associé à l’INRIA Saclay, le centre de la vision numérique, crée en 2011, le CVN se situe à l’intersection entre les mathématiques et l’informatique, en quête de modèles mathématiques et de leurs solutions informatiques pour la structuration automatique, l'interprétation et la compréhension de données (visuelles) massives en mettant l'accent sur ​​l'apprentissage automatique, la vision par ordinateur et les modèles discrets en analyse d'images biomédicales.
 

Vision par ordinateur

Reconstruction d’images, détection de frontières, segmentation avec ou sans modèle, estimation et suivi du flot, analyse d’images, reconnaissance d’objets et modélisation 3D à large échelle basée sur une grammaire...

Machine Learning et Optimisation

Auto-apprentissage, modèles graphiques probabilistes, apprentissage à instances multiples, régression à sortie structurée, méthodes à noyaux, apprentissage multitâches, en ligne, ou de transfert...

Analyse d’images biomédicales (équipe galen-inria)

Détection et reconstruction comprimée, détection de tumeurs, segmentation d’organes, recalage et fusion déformables d’images, modélisation longitudinale d’organes, anatomie virtuelle, études de population et la compréhension du cerveau...

The Center of Visual Computing of CentraleSupelec & Inria, Saclay, Ile-de-France, organized a summer school in Biomedical Image Analysis: Modalities, Methodologies & Clinical Research at the Institut Henri Poincaré at the heart of Paris. This was an official event of the Medical Image Computing and Computer Assisted Intervention Society (MICCAI). Please find out all the lectures given for this special event.

Domaines d’application

 

  • Systèmes industriels complexes (automatisation, tri optique, robotique, systèmes de contrôle, contrôle non-destructif) ;
  • Industrie automobile (aide à la conduite, détection de piétons, régulateur automatique de vitesse, aide au stationnement) ;
  • Santé (diagnostique assisté par ordinateur, capteurs multimodaux, exploration de données, imagerie par bio-marqueurs, chirurgie assistée par ordinateur)

     

Chiffres clés
 

  • Enseignants-chercheurs et chercheurs: 5
  • Doctorants : 17
  • Personnels techniques et administratifs : 3
  • Stagiaires : 8
  • Brevets: 1
  • Publications : 22

     

Partenaires académiques

  • INRIA (FR),
  • École des Ponts-ParisTech (FR),
  • Henri Mondor University Hospital (FR),
  • European Hospital Georges Pompidou (FR),
  • Pitié-Salpêtrière Hospital (FR),
  • Montpelier University Hospital (FR),
  • Stanford University (USA),
  • StonyBrook University (USA),
  • Computer Science Department (USA),
  • University of Pennsylvania (USA),
  • University of California at Los Angeles (USA),
  • Technical University of Munich (DE),
  • University of Lugano (CH),
  • University of Oxford (UK),
  • University College London (UK),
  • University of Oulu (Finland),
  • Ecole Polytechnique de Montreal (CA),
  • International Institute of Information Technology, Hyderabad (IN).

 

Pôles de compétitivité

Digiteo, Medicen, Cap Digital

 

Partenaires industriels

General Electric Health Care, Siemens Medical Solutions, Intrasense, LLTECH

 

Contact

Directeur : Jean-Christophe Pesquet

Téléphone : +33 (0)1 41 13 17 85
Fax : +33 (0)1 41 13 10 06

Email : Jean-Christophe.pesquet@centralesupelec.fr

Les dernières publications

Article dans une revue
01/01/2022
From dose reduction to contrast maximization: can deep learning amplify the impact of contrast media on brain MR image quality? A reader study
Alexandre Bône, Samy Ammari, Yves Menu, Corinne Balleyguier, Eric Moulton, Emilie Chouzenoux, Andreas Volk, Gabriel C.T.E. Garcia, François Nicolas, Philippe Robert, Marc-Michel Rohé, Nathalie Lassau
Pré-publication, Document de travail
22/12/2021
Article dans une revue
17/12/2021
Dynamic Neural Network for Lossy-to-Lossless Image Coding
Tassnim Dardouri, Mounir Kaaniche, Amel Benazza-Benyahia, Jean-Christophe Pesquet
Article dans une revue
01/12/2021
Magnification-driven B-spline Interpolation for Cone Beam Projection and Backprojection
Marion Savanier, Cyril Riddell, Yves Trousset, Emilie Chouzenoux, Jean-Christophe Pesquet
Article dans une revue
01/12/2021
Multi-label Deep Convolutional Transform Learning for Non-intrusive Load Monitoring
Shikha Singh, Emilie Chouzenoux, Giovanni Chierchia, Angshul Majumdar
Voir toutes les publications du laboratoire sur HAL